WS 2016/17

Symplectic Geometry

Homework 5

Exercise 1. (8 points)

Recall that the complex projective space $\mathbb{C}P^n$ is a real 2*n*-dimensional manifold

 $\mathbb{C}P^n := \left\{ (z_0, \dots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\} \right\} / \sim,$

where $(z_0, \ldots, z_n) \sim (\lambda z_0, \ldots, \lambda z_n)$ for any $\lambda \in \mathbb{C} \setminus \{0\}$. Show that

$$H^k_{dRham}(\mathbb{C}P^n) = \begin{cases} \mathbb{R} & \text{if } k = 0, 2, \dots, 2n \\ 0 & \text{otherwise} \end{cases}$$

Note that the theorems from the lecture already imply that $H^0_{dRham}(\mathbb{C}P^n) = H^{2n}_{dRham}(\mathbb{C}P^n) = \mathbb{R}$. Hint: You may want to use the Mayer-Vietoris Sequence with $U = \{[(z_0, \ldots, z_n)] \in \mathbb{C}P^n, z_n \neq 0\}$ and $V = \mathbb{C}P^n \setminus \{[(0, \ldots, 0, 1)]\}.$

Exercise 2. (3 points)

Find the constant $a \in \mathbb{C}$ such that for the identification $\Psi \colon \mathbb{C}^n \to \mathbb{R}^{2n}$ given by $(z_1, \ldots, z_n) = (x_1 + iy_1, \ldots, x_n + iy_n) \mapsto (x_1, \ldots, x_n, y_1, \ldots, y_n)$ one has that $\Psi^*(\sum_{j=1}^n dx_j \wedge dy_j) = a \sum_{j=1}^n dz_j \wedge d\overline{z}_j$.

Exercise 3. (5 points)

Observe that for $S^2 \subset \mathbb{R}^3$ one can identify $T_p S^2$ with $\{v \in \mathbb{R}^3; \langle p, v \rangle = 0\}$. Show that the 2-form ω on S^2 given by

$$\omega_p(v_1, v_2) := \langle p, v_1 \times v_2 \rangle,$$

(where $v_1 \times v_2$ is the cross product in \mathbb{R}^3), is symplectic.

Exercise 4. (8 points)

Consider cylindrical polar coordinates (θ, x_3) on the sphere minus its poles $S^2 \setminus \{(0, 0, \pm 1)\}$, where $0 \le \theta < 2\pi$ and $-1 < x_3 < 1$. Show that the area form induced by the Euclidean metric is precisely the from $\omega = d\theta \wedge dx_3$. In other words, the horizontal projection from the cylinder to the sphere preserves the surface area.

Bonus Exercise. (8 points)

Let $(q_1, \ldots, q_n) \colon U \to \mathbb{R}^n$ be a coordinate chart for an *n*-dimensional manifold X. Recall that then any 1-form $\xi \in \Omega^1(X)$ is locally given by

$$\xi = \sum_{j=1}^{n} p_j dq_j$$

and $(q_1, \ldots, q_n, p_1, \ldots, p_n): T^*U \to \mathbb{R}^{2n}$ is a coordinate chart for T^*X . The tautological 1-form $\alpha \in \Omega^1(T^*X)$ on T^*X is locally defined as

$$\alpha_{|(q,p)} = \sum_{j=1}^{n} p_j dq_j.$$

Show that α is intrinsically defined, i.e. that this definition does not depend on the choice of coordinate chart.

Exercise 5. (8 points)

Show that the above α , at a point $v \in T_q^* X \subset T^* X$ can also be defined by

$$\alpha_{|v} = (d\pi_v)^* v,$$

where $d\pi_v : T_v(T^*X) \to T_qX$ is the derivative (push-forward) at v of the projection map $\pi : T^*X \to X$ and $(d\pi_v)^*$ is its transpose. (In local coordinates, $d\pi(\frac{\partial}{\partial q_j}) = \frac{\partial}{\partial q_j}$ and $d\pi(\frac{\partial}{\partial p_j}) = 0$.)

Exercise 6. (8 points) Show that the tautological 1-form α is uniquely characterized by the property that, for every 1-form $\mu: X \to T^*X$, it holds that the pull back $\mu^*\alpha$ of α via the map μ is equal to μ itself.

Bonus Exercise. (8 points) Show that there is an isomorphism

$$T_{(q,0)}T^*X \cong T_qX \oplus T_q^*X$$

and

$$-d\alpha_{(q,0)}(v,w) = w_1^*(v_0) - v_1^*(w_0)$$

for $v = (v_0, v_1^*) \in T_q X \oplus T_q^* X$ and $w = (w_0, w_1^*) \in T_q X \oplus T_q^* X$.

Hand in: Thursday November 24th in the exercise session in Übungsraum 1, MI