Symplectic Geometry

Homework 5

Exercise 1. (8 points)
Recall that the complex projective space $\mathbb{C} P^{n}$ is a real $2 n$-dimensional manifold

$$
\mathbb{C} P^{n}:=\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1} \backslash\{0\}\right\} / \sim,
$$

where $\left(z_{0}, \ldots, z_{n}\right) \sim\left(\lambda z_{0}, \ldots, \lambda z_{n}\right)$ for any $\lambda \in \mathbb{C} \backslash\{0\}$. Show that

$$
H_{d R h a m}^{k}\left(\mathbb{C} P^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=0,2, \ldots, 2 n \\ 0 & \text { otherwise }\end{cases}
$$

Note that the theorems from the lecture already imply that $H_{d R h a m}^{0}\left(\mathbb{C} P^{n}\right)=H_{d R h a m}^{2 n}\left(\mathbb{C} P^{n}\right)=\mathbb{R}$. Hint: You may want to use the Mayer-Vietoris Sequence with $U=\left\{\left[\left(z_{0}, \ldots, z_{n}\right)\right] \in \mathbb{C} P^{n}, z_{n} \neq 0\right\}$ and $V=\mathbb{C} P^{n} \backslash\{[(0, \ldots, 0,1)]\}$.

Exercise 2. (3 points)
Find the constant $a \in \mathbb{C}$ such that for the identification $\Psi: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ given by $\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}+\right.$ $\left.i y_{1}, \ldots, x_{n}+i y_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ one has that $\Psi^{*}\left(\sum_{j=1}^{n} d x_{j} \wedge d y_{j}\right)=a \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}$.

Exercise 3. (5 points)
Observe that for $S^{2} \subset \mathbb{R}^{3}$ one can identify $T_{p} S^{2}$ with $\left\{v \in \mathbb{R}^{3} ;\langle p, v\rangle=0\right\}$. Show that the 2-form ω on S^{2} given by

$$
\omega_{p}\left(v_{1}, v_{2}\right):=\left\langle p, v_{1} \times v_{2}\right\rangle
$$

(where $v_{1} \times v_{2}$ is the cross product in \mathbb{R}^{3}), is symplectic.

Exercise 4. (8 points)
Consider cylindrical polar coordinates $\left(\theta, x_{3}\right)$ on the sphere minus its poles $S^{2} \backslash\{(0,0, \pm 1)\}$, where $0 \leq \theta<2 \pi$ and $-1<x_{3}<1$. Show that the area form induced by the Euclidean metric is precisely the from $\omega=d \theta \wedge d x_{3}$. In other words, the horizontal projection from the cylinder to the sphere preserves the surface area.

Bonus Exercise. (8 points)
Let $\left(q_{1}, \ldots, q_{n}\right): U \rightarrow \mathbb{R}^{n}$ be a coordinate chart for an n-dimensional manifold X. Recall that then any 1 -form $\xi \in \Omega^{1}(X)$ is locally given by

$$
\xi=\sum_{j=1}^{n} p_{j} d q_{j}
$$

and $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right): T^{*} U \rightarrow \mathbb{R}^{2 n}$ is a coordinate chart for $T^{*} X$. The tautological 1-form $\alpha \in \Omega^{1}\left(T^{*} X\right)$ on $T^{*} X$ is locally defined as

$$
\alpha_{\mid(q, p)}=\sum_{j=1}^{n} p_{j} d q_{j} .
$$

Show that α is intrinsically defined, i.e. that this definition does not depend on the choice of coordinate chart.

Exercise 5. (8 points)
Show that the above α, at a point $v \in T_{q}^{*} X \subset T^{*} X$ can also be defined by

$$
\alpha_{\mid v}=\left(d \pi_{v}\right)^{*} v,
$$

where $d \pi_{v}: T_{v}\left(T^{*} X\right) \rightarrow T_{q} X$ is the derivative (push-forward) at v of the projection map $\pi: T^{*} X \rightarrow$ X and $\left(d \pi_{v}\right)^{*}$ is its transpose. (In local coordinates, $d \pi\left(\frac{\partial}{\partial q_{j}}\right)=\frac{\partial}{\partial q_{j}}$ and $d \pi\left(\frac{\partial}{\partial p_{j}}\right)=0$.)

Exercise 6. (8 points)
Show that the tautological 1-form α is uniquely characterized by the property that, for every 1-form $\mu: X \rightarrow T^{*} X$, it holds that the pull back $\mu^{*} \alpha$ of α via the map μ is equal to μ itself.

Bonus Exercise. (8 points)
Show that there is an isomorphism

$$
T_{(q, 0)} T^{*} X \cong T_{q} X \oplus T_{q}^{*} X
$$

and

$$
-d \alpha_{(q, 0)}(v, w)=w_{1}^{*}\left(v_{0}\right)-v_{1}^{*}\left(w_{0}\right)
$$

for $v=\left(v_{0}, v_{1}^{*}\right) \in T_{q} X \oplus T_{q}^{*} X$ and $w=\left(w_{0}, w_{1}^{*}\right) \in T_{q} X \oplus T_{q}^{*} X$.

